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An average structure associated with a given quasilattice is a system composed of

several average lattices that in reciprocal space produces strong main re¯ections.

The average lattice of a quasicrystal is a useful concept closely related to the

geometric description of the quasicrystal to crystal transformation and has been

proved to be structurally signi®cant. Here we calculate average structures for

arbitrary two- and three-dimensional quasilattices using the dual generalized

method. Additionally, closed analytical expressions for the coordinates of the

average structure, the quasiperiodic lattice and its diffraction pattern are given.

1. Introduction

The concept of the average lattice was ®rst introduced in the

theory of incommensurate structures (see, for instance, Janner

& Janssen, 1977). In quasicrystals, to de®ne an average lattice

has been proven to be possible and structurally signi®cant

(Duneau & Oguey, 1990; Wolny, 1998a; Xu & Mai, 1998;

Steurer & Haibach, 1999; Steurer & Cervellino, 2001;

Cervellino & Steurer, 2002). Here, we propose a general

method to ®nd average structures based on the so-called

generalized dual method (GDM) to generate quasiperiodic

lattices (Levine & Steinhardt, 1986; Socolar & Steinhardt,

1986). The proposed method allows us to obtain closed

analytical expressions for the coordinates of the quasilattice,

the average structure and its diffraction pattern. It is also

shown that the average structure is composed of the super-

position of average lattices and dominates the response for

long-wave modes of the incident radiation.

To keep things as simple as possible, we introduce our

formalism for two-dimensional quasilattices. So, we shall ®rst

use the GDM to obtain analytical expressions for the vertex

coordinates of a two-dimensional quasiperiodic tiling. From

the obtained formulae, it can be easily seen that the quasi-

lattice can be expressed as an average structure plus small

¯uctuations. In some sense, this is a generalization of the

observation made for the one-dimensional Fibonacci chain,

where the positions can be written as an average lattice plus a

¯uctuation part (Naumis et al., 1999), and in fact a unit cell can

be de®ned by using a probabilistic approach (Wolny, 1998b).

The behavior of the quasilattice for excitations of any kind

with long-wave modes can be related to this average structure,

and the complete diffraction pattern can be obtained from the

expressions given by the GDM, and by using a Fourier series

for the ¯uctuation part. The generalization of the method for

three-dimensional quasilattices is given in x5.

2. Analytical expression for a quasilattice

By following the steps of the GDM to obtain plane quasi-

periodic structures, we ®nd an expression for the coordinates

of the quasilattice. The GDM procedure is written in cursives;

for further details, the reader is referred to Levine & Stein-

hardt (1986) and Socolar & Steinhardt (1986).

I. Construct a star of N basis vectors ej, which contains the

symmetry that the quasilattice is expected to have.

For an octagonal tiling, for example, N � 4 and the basis

vectors fe1; e2; e3; e4g point to four vertices of a regular

octagon.

II. Construct a set of parallel lines perpendicular to each star

vector to obtain a grid. These lines satisfy

x � ej � nj � �j;

where nj is an integer, x is a vector in 2D and �j are shifts of the

grid with respect to zero. The grid divides the space in open

regions limited by planes. Each point in these spaces can be

indexed by a set of integers corresponding to its ordinal position

in the grid (given by nj) for each ej, i.e., if a point in an open

region lies between the planes kj and kj � 1, for the direction ej,

we assign the number kj to this region. A similar construction

can be made for each star vector, to obtain the N ordinal

coordinates (k1; k2; . . . ; kN).

According to this step, regions to be mapped are de®ned by

the intersection of two lines in 2D, which produces the four



vertices of a cell. For each combination of star vectors, these

intersections are the solutions of

x � ej � xnj � nj � �j;

x � ek � xnk � nk � �k;

where nj and nk are integers. The solutions of this system, the

points d�jk�, can be obtained by Kramer's rule and are given

by

d�jk� � xnjujk � xnkukj;

where

ujk � e?j =ajk; �1�
e?j is a vector perpendicular to ej and ajk is the area of the

rhombus generated by ej and ek.

Now consider the family of lines generated by the vectors ej
and ek. A close analysis shows that around each intersection

there are four regions with ordinal coordinates

(nj; nk; f �nj; nk�), (nj; nk � 1; f �nj; nk�), (nj � 1; nk; f �nj; nk�),

(nj � 1; nk � 1; f �nj; nk�), where f �nj; nk� are the ordinal

coordinates with respect to the grid lines generated by the

vectors that are different from ej and ek. Each of these points

generates a vertex of a rhombus. The function f �nj; nk� can be

obtained by the dot product between the point d� jk� with each

star vector, and then by using the lowest integer function

(denoted by bxc). Thus, for the direction el, the corresponding

ordinal coordinates are

kl � b�xnjujk � xnkukj� � el ÿ �lc � 1; �2�
where the one arises from the way in which one is labelling the

space between grids.

III. The quasilattice is obtained by using the dual transforma-

tion that associates with each open region the point

t �PN
j�1

kjej

in the dual space. The point t is a vertex of a quasiperiodic

packing of rhombic unit cells with an orientational symmetry

corresponding to the star vectors ej.

From (2), the dual transformation can be explicitly done to

obtain one of the vertices associated with the intersection of

lines j and k:

t0
nj;nk

� njej � nk ek �
P
l 6�j6�k

fb�xnjujk � xnkukj� � el ÿ �lc � 1gel:

The complete set of vertices associated with the intersections

are obtained by considering the N
2

ÿ �
pairs � jk�. This, and (1),

allows us to write the dual transformation as

t0
nj;nk

�
XN
k< j

"
njej � nkek

�
X
l 6�j6�k

 $
xnj

bjl

ajk
� xnk

bkl
ajk

ÿ �l

%
� 1

!
el

#
; �3�

where bml � e?m � el, m � k; l. The other three regions

generate the remaining three vertices of each rhombus, with

coordinates given by

t1
nj;nk

� t0
nj;nk

ÿ ej;

t2
nj;nk

� t0
nj;nk

ÿ ek;

t3
nj;nk

� t0
nj;nk

ÿ ej ÿ ek:

�4�

Equations (3) and (4) provide an analytical expression for the

vertices of the quasilattice in two dimensions. Notice that, as

a consequence of the dualization procedure, where a tile is

associated with a single intersection of the grid, the expres-

sions for each point in the quasilattice are not unique. A vertex

of the tile can arise from Z different intersection points, where

Z is the coordination number of the site. As we will see, this

over-counting has an important effect in the de®nition of the

average structure.

3. The average structure

By using the identity x � bxc � fxg in (3), where fxg denotes

the decimal part of a number, we have

t0
nj;nk

�
XN
k< j

"
njej � nkek

�
X
l 6�j 6�k

xnj
bjl

ajk
� xnk

bkl
ajk

ÿ �l

� �
� 1

2

� �
el

�
X
l 6�j 6�k

1
2 ÿ xnj

bjl

ajk
� xnk

bkl
ajk

ÿ �l

� �� �
el

#
;

which can be written as

t0
nj;nk

� ht0
nj;nk

i � f0
nj;nk

: �5�
The ®rst term of the right side de®nes an average structure

ht0
nj;nk

i �
XN
k< j

"
njej � nkek

�
X
l 6�j6�k

xnj
bjl

ajk
� xnk

bkl
ajk

ÿ �l �
1

2

� �
el

#
; �6�

and the last one is a ¯uctuation part

f0
nj;nk

�
XN
k< j

XN
l 6�j6�k

1
2 ÿ xnj

bjl

ajk
� xnk

bkl
ajk

ÿ �l

� �� �
el; �7�

which we expect to have zero average in the sense thatP
r

�hri ÿ r� � 0

because f�xg covers in a dense and regular way the interval

�0; 1� if � is an irrational number.

The structure of ht0
nj;nk

i is better appreciated if we rewrite

(6) as

ht0
nj;nk

i � PN
k< j

�njajk � nkakj � Rjk�; �8�
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where

ajk � ej �
P
l 6�j6�k

bjl=ajkel; �9a�

akj � ek �
P

l 6�j6�k
bkl=ajkel �9b�

and

Rjk �
X
l 6�j6�k

�j

bjl

ajk
� �k

bkl
ajk

ÿ �l � 1
2

� �
el: �10�

Observe then that the average structure consists of a super-

position of N
2

ÿ �
lattices with basis given by (9) plus shift terms

given by (10). As in the case of the expressions for the

quasilattice, the complete structure is obtained from (8) and

ht1
nj;nk

i � ht0
nj;nk

i ÿ ej;

ht2
nj;nk

i � ht0
nj;nk

i ÿ ek;

ht3
nj;nk

i � ht0
nj;nk

i ÿ ej ÿ ek:

�11�

As discussed at the end of the previous section, the dualization

process introduces a degeneracy in (3) and (4) to generate the

quasilattice. If a point r of the quasilattice is obtained from the

intersection of two lines generated by the vectors ej and ek, it

can also be obtained from the intersection of two lines

generated by two different vectors, say es and et. When the

average structure is considered, it turns out that these two

intersection points do not necessarily produce the same point

of the lattice. In fact, for each point in the quasilattice, we have

Z points in the average structure. Since a quasilattice admits

in®nite average lattices (Cervellino & Steurer, 2002), one can

always arbitrarily choose one of these Z points in order to

de®ne a possible average structure.

3.1. The average structure of the octagonal tiling

The octagonal tiling is generated with the star of vectors

pointing to four vertices of a regular octagon:

e1 � �1; 0�;
e2 � �1=21=2��1; 1�;
e3 � �0; 1�;
e4 � �1=21=2��ÿ1; 1�:

In Fig. 1(a), a portion of the octagonal quasiperiodic tiling

obtained with the above vectors and formulae (3) and (4), with

shifts � � �1=2; 1=2; 1=2; 1=2�, is shown.

According to (8), the average structure ht0
nj;nk

i consists of

the superposition of 4
2

ÿ � � 6 average lattices plus the corre-

sponding shift terms. By using the previous vectors and the

shift a in (8), we can deduce that these six average lattices fall

into two basic classes generated by

�1 � f�0; 2 � 21=2�; �2;ÿ2�g
and

�2 � f�2; 0�; �0; 2�g;
respectively. In particular, if R�=4 denotes a rotation by �=4,

the six possible average lattices are:

L21 � Spanf�1g;
L32 � SpanfR�=4�1g;
L43 � SpanfR2

�=4�1g;
L41 � SpanfR3

�=4�1g;
L31 � Spanf�2g;
L42 � SpanfR�=4�2g:

�12�

By Spanf�g, we mean that the term is generated by linear

integer combinations of the basis �. The corresponding shift

terms Rjk are obtained from (10) and are given by

R21 �
2 ÿ 21=2

4
;ÿ1 � 3

2 � 21=2

� �

R32 � ÿ1 � 3

2 � 21=2
;

2 ÿ 21=2

4

� �
;

R43 � 1 ÿ 3

2 � 21=2
;

2 ÿ 21=2

4

� �
;

R41 �
2 � 21=2

4
; 1 � 3

2 � 21=2

� �
;

R31 � 1
2 ;

1
2

ÿ �
;

R42 � 0;
1

21=2

� �
:

The complete average structure is the superposition of these

six lattices, with the corresponding shift terms, and those

obtained with (11). Portions of the two basic average lattices

L21 and L31 are shown in Figs. 1(b) and (c), respectively. In Fig.

Figure 1
(a) The octagonal tiling obtained with equations (3) and (4), with shifts
a � �1=2; 1=2; 1=2; 1=2�. Portions of the basic average lattices L21 (b) and
L31 (c) that compose the average structure (d) of the octagonal tiling.



1(d), a portion of the average structure of the octagonal

quasilattice is shown.

As we will see in the next section, the importance of the

average structure relies on its diffraction properties since it

contains a signi®cant fraction of the scattered intensity of the

associated quasiperiodic structure. Also, it will be shown that

the average structure dominates the response for long-wave

modes of incident radiation.

4. Diffraction

The diffraction properties of the quasilattice and the average

structure are associated with their Fourier transform. Using

the decomposition (5), the Fourier transform of the quasi-

lattice with vertices t is given by

F�q� �P
t�f

exp�iq � hti� exp�iq � f�: �13�

Since f is a vector with a norm smaller than one, it can be

expanded as a power series for small q:

exp�iq � f� � 1 � iq � f � �q � f�2=2 � . . . :

This suggests that the amplitudes are scaled as powers of q,

where the ®rst-order contribution is given by the average

structure. One then can conclude that, in many cases, the

average structure dictates the response for long wavelengths

of the probing particles, and the ¯uctuation part gives the

corrections. At long wavelengths, the probe particle is not

affected by the details of the quasiperiodic potential, and only

feels an average effective potential.

The ¯uctuation term can be treated analytically owing to

the periodic nature of the fractional part function. To make

things easier, in what follows we set the shifts a to zero since

scattering intensities are not affected by this phase. Let us ®rst

write (13) as

F�q� �P
j<k

P
nj;nk

hnj;nk �q� exp�iq � ht0
nj;nk

i� exp�iq � f0
nj;nk

�; �14�

where hnj;nk�q� is a factor that comes from (4), and is given by

hnj;nk�q� �
1

Znj;nk

� exp�ÿiq � ej�
Znjÿ1;nk

� exp�ÿiq � ek�
Znj;nkÿ1

� exp�ÿiq � �ej � ek��
Znjÿ1;nkÿ1

;

where Znj;nk
is the local coordination in each site. This term is

introduced to compensate for the overcounting. Since fxg is a

function with period one, the ¯uctuation f0
nj;nk

[see (7)] can be

expressed as a Fourier series at x � nj and y � nk:

Sl�x; y� � exp ÿiq � el x
bjl

ajk
� y

bkl
ajk

� �� �
:

Thus,

Sl�x; y� �
X
f ;g

B�f ; g� exp 2�i
fx

T1

� gy

T2

� �� �
;

where f and g are integers,

B�f ; g� � 1

T1T2

Z T1

0

Z T2

0

dx dy

� exp ÿ2�i
fx

T1

� gy

T2

� �
ÿ iq � el

x

T1

� y

T2

� �� �

and

T1 �
ajk

bjl
; T2 �

ajk

bkl
:

B�f ; g� can be evaluated using the relationship fx� yg � x� y

when fxg � fyg< 1, provided that special care is taken with the

integration limits to always ful®l this condition. After some

lengthy calculations, we obtain

B�g� � B�f ; g� �
0 if f 6� g
ÿi exp�ÿiq � el� ÿ 1

2�g� q � el
if f � g.

8<
:

Since for each l in (3) we can write a similar expression, we

de®ne a vector g � �g1; g2; . . . ; gN�, where each component is

an arbitrary integer. With this vector, the ¯uctuation part of

the FT is

X
g

Y
l 6�j6�k

B�gl�
 !

exp
X
l 6�j 6�k

2�igl nj
bjl

ajk
� nk

bkl
ajk

� �" #
:

Consequently, using (14), (6) and this last result, the total FT is

F�q� �
X

nj;nk;gl

hnj;nk �q�
Y
l 6�j6�k

B�gl�
 !

exp

"
iq � njej � nkek

ÿ �

� i
X
l 6�j6�k

nj
bjl

ajk
� nk

bkl
ajk

� �
�q � el � 2�gl�

#
: �15�

A clear drawback of this formula is that the coordination Znj;nk
of each site must be known. Although it has this analytical

dif®culty, the method is much more ef®cient than the cut-and-

projection method, where a complicated algorithm for deter-

mining the volume of the acceptance domain is needed.

Equation (15) can be approximated by considering the ¯uc-

tuations of the local coordination (�Znj;nk
) with respect to the

average coordination number hZi as follows:

1

Znj;nk

� 1

hZi ��Znj;nk

' 1

hZi 1 ÿ
�Znj;nk

hZi
� �

:

As an approximation, we retain only the ®rst term, in such a

way that the coordination of each site is replaced by an

average coordination. The effect of this truncation is that the

amplitudes in each diffraction spot are changed but the posi-

tions of the spots, in the reciprocal space, are not altered. A

very rough estimation of the error introduced with this

approximation can be given if we observe that �Znj;nk
has a

certain distribution. Since each type of vertex has a concen-

tration P�Z� in the lattice, the magnitude of the error is of the

order of the standard deviation of P�Z�:
�Znj;nk

hZi � ��Z�ÿ2

hZi � 1

hZi
X
�

P�Z���Z� ÿ hZi�2

" #1=2

;
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where � is the kind of vertex. For example, in the octagonal

tiling, discussed in x3.1, � � 3; 4; 5; 6; 7; 8, each occurring with

frequencies f3 � !, f4 � 2!2, f5 � 2!3, f6 � 2!4, f7 � !5 and

f8 � !4, ! � 21=2 ÿ 1. The average coordination is, then,

hZi �P8
i�3 ifi � 4. The maximum deviation is �Znj;nk

� 4,

which corresponds to Z � 8. The concentration of these

vertices is, however, very low (2.9%) since the more frequent

vertices are those with coordination Z � 3, Z � 4 and Z � 5

(41.4, 34.3 and 14.2%, respectively).

By use of the Fourier series of the � function in (15), the sum

over nj and nk can be carried out, and using this result in (13)

we ®nally get

F�q� �
X
j<k;g

hjk�q�
Y
l 6�j6�k

B�gl�
 !

� � q � ej �
X
l 6�j6�k

bjl

ajk
q � el � 2�gl� � � 2�mj

 !

� � q � ek �
X
l 6�j6�k

bkl
ajk

�q � el � 2�gl� � 2�mk

 !
;

where mj and mk are integers. The function hjk�q� is similar to

hnj;nk�q� except for the fact that the local coordination has

been replaced by the average coordination. Notice that the

two � functions de®ne the positions of the diffraction spots,

thus de®ning the reciprocal lattice of the quasicrystal, as will

be clari®ed in what follows.

F�q� is different from zero if the two �s are satis®ed

simultaneously for a given value of the probe wavevector q.

Thus, q must satisfy the following set of equations:

q � ajkej �
P

l 6�j6�k
bjlel

 !
� ÿ2� ajkmj �

P
l 6�j6�k

bjlgl

 !
;

q � ajkek �
P

l 6�j6�k
bklel

 !
� ÿ2� ajkmk �

P
l 6�j6�k

bklgl

 !
;

which has as solution the vector q � Q,

Q �P
k<j

P
mk;mj

"
ajkmj �

P
l 6�j6�k

bjlgl

 !
Q

�1�
jk

� ajkmk �
P

l 6�j6�k
bklgl

 !
Q

�2�
jk

#
; �16�

where Q�1�
jk and Q�2�

jk are vectors that de®ne the basis in the two-

dimensional reciprocal space,

Q
�1�
jk � 2��jvjkj2ujk ÿ �ujk � vjk�vjk�

jujkj2jvjkj2 ÿ �ujk � vjk�2
; �17a�

Q
�2�
jk � 2��jujkj2vjk ÿ �ujk � vjk�ujk�

jujkj2jvjkj2 ÿ �ujk � vjk�2
; �17b�

where ujk � ajkej �
P

l 6�j6�k bjlel and vjk � ajkek �
P

l 6�j6�k bklel.
Notice that we can arrive at this last result by calculating the

reciprocal vectors of the set (8) with shifts �l � 0.

Finally, the diffraction pattern of the quasicrystalline lattice

is given by the amplitude of the FT,

I�q� �
X
Q

khjk�q�k2
Y
l 6�j6�k

4 sin2�q � el=2�
�2�gl � q � el�2

 !
��qÿQ�: �18�

We observe that maxima in amplitude are produced when

q � el � ÿ2�gl; �19�
which is similar to the Laue condition for diffraction that holds

in periodical lattices, but here it refers to a lattice in a higher

dimension. It is also interesting to note that the more intense

peaks are those with gl � 0, and the corresponding vectors Q

are the reciprocal vectors of the average structure of the

quasicrystal. Consequently, the average structure produces

strong main re¯ections of the quasilattice. When we consider

integer values gl 6� 0, new Bragg peaks appear that can be

considered satellites of the reciprocal average structure.

Formally, the reciprocal space is densely ®lled (as expected for

a quasiperiodic structure) when all possible integer values of gl
are taken into account.

4.1. The diffraction pattern of the octagonal tiling

Let us consider again the example of the octagonal tiling

discussed in x3.1 The reciprocal vectors are de®ned by the

superposition of six periodic lattices with bases fQ�1�
21 ;Q

�2�
21 g,

fQ�1�
31 ;Q

�2�
31 g, fQ�1�

32 ;Q
�2�
32 g, fQ�1�

41 ;Q
�2�
41 g, fQ�1�

42 ;Q
�2�
42 g and

fQ�1�
43 ;Q

�2�
43 g, respectively [see (17)]. By using the star vector of

the octagonal lattice, we can see that these basis vectors fall

into two basic classes generated by:

Q21 � fQ�1�
21 ;Q

�2�
21 g � f��; ��; �21=2�; 0�g

and

Q31 � fQ�1�
31 ;Q

�2�
31 g � f�0; ��; ��; 0�g;

such that the remaining basis vectors are obtained as

Q32 � R�=4Q21, Q43 � R2
�=4Q21, Q41 � R3

�=4Q21, Q42 �
R�=4Q31, where R�=4 is a rotation by �=4. As discussed at the

end of the previous section, the complete reciprocal vectors

are obtained with (16) by running over mj and mk and

considering arbitrary integer values gl. As an example, Fig.

2(a) shows a portion of the reciprocal vectors obtained with

(16) for gl � 0, l � 1; 2; 3; 4, which corresponds to the reci-

procal of the average structure. In order to exemplify how the

reciprocal space is ®lled, Fig. 2(b) shows the superposition of

the previous reciprocal vectors with that obtained with gl � 1,

l � 1; 2; 3; 4, and displayed with smaller dots. Observe that the

new Q vectors appear as satellites of the vectors corre-

sponding to the reciprocal of the average structure. This effect

is also displayed in Fig. 2(c), where the reciprocal vectors for

gl � 2, l � 1; 2; 3; 4, are superimposed, with even smaller dots,

on the previous ones. Fig. 2(d) shows a portion of the

diffraction pattern of the average structure (gl � 0) with

intensities calculated using (18). The black spots are re¯ec-

tions with high intensity that ful®ls (19). The remaining

re¯ections of the average structure are shown using gray dots

with radius proportional to their intensity. The reciprocal of

the average structure contains, therefore, a signi®cant fraction

of the scattered intensity of the quasiperiodic structure.



For comparison purposes, in Fig. 3 we show the diffraction

pattern of the octagonal quasiperiodic tiling compared with

those of the average structure. The former is shown with

circles with radius equal to the intensity calculated using the

cut-and-projection method (see, for instance, AragoÂ n et al.,

1989); four-dimensional points between ÿ13 and 13 were

mapped and the maximum calculated intensity is Imax �
28.0517, in arbitrary units. A cutoff of 2.0 was used to display

the pattern. The diffraction pattern of the average structure is

superimposed using ®lled squares with edge length equal to

twice the intensity calculated using (18). To properly compare,

intensities were scaled as follows. Since, according to (18), the

reciprocal vectors that ful®l the Laue condition (19) have

in®nite intensity, these intensities were set to Imax. Next, the

intensities of the remaining reciprocal vectors were scaled

such that the maximum obtained equals the next maximum

I< Imax of the octagonal diffraction pattern. As can be seen,

the values of the intense peaks ®t very well and the average

structure accounts for a large portion of the most intense

peaks observed.

5. Three-dimensional quasilattices

The results presented in previous sections can be generalized

to the case of three-dimensional quasilattices in a straight-

forward manner. Here, we present a survey of the main

equations without further details.

According to the GDM, a three-dimensional quasilattice is

constructed by means of a set of parallel planes perpendicular

to a three-dimensional star of vectors. For each combination

of the star vectors, the intersections of these planes are the

solutions of the equations

x � es � xns � ns � �s;

x � ej � xnj � nj � �j;

x � ek � xnk � nk � �k;

where ns; nj and nk are integers. The solutions of this system

are of the form

d�sjk� � xnsuksj � xnjusjk � xnkujks;

where

usjk �
ej � ek

es � �ej � ek�
� ej � ek

Vsjk

and

Vsjk � es � �ej � ek�
is the volume of a rhombohedron with sides es; ej and ek.

The ordinal coordinates of regions in the multigrid, along

the direction el, are

kl � b�xnsuksj � xnjusjk � xnkujks� � el ÿ �lc � 1:

Using these coordinates, the dual transformation leads us to

the formula for the coordinates of the vertices of a three-

dimensional quasilattice:

t0ns;nj;nk �
XN
k<j<s

"
nses � njej � nkek

�
X

l 6�j6�k6�s
xns

Vlsj

Vsjk

� xnj
Vljk

Vsjk

� xnk
Vslk

Vsjk

ÿ �l

� �
� 1

� �
el

#
;

where one has to consider the N
3

ÿ �
triplets s, j and k. The

remaining seven vertices of each rhombohedron are

t1
ns;nj;nk

� t0
ns;nj;nk

ÿ es;

t2
ns;nj;nk

� t0
ns;nj;nk

ÿ ej;

t3
ns;nj;nk

� t0
ns;nj;nk

ÿ ek;

t4
ns;nj;nk

� t0
ns;nj;nk

ÿ ej ÿ ek;

t5
ns;nj;nk

� t0
ns;nj;nk

ÿ es ÿ ej;

t6
ns;nj;nk

� t0
ns;nj;nk

ÿ es ÿ ek;

t7
ns;nj;nk

� t0
ns;nj;nk

ÿ ej ÿ ek ÿ es:

For each of these vectors, by using the identity, x � bxc � fxg,
the expression for the points in the quasilattice can be written

as the sum of an average structure,

ht0
ns;nj;nk

i � PN
k<j<s

�nsasjk � njajks � nkaksj � Rjks�;

where
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Figure 2
The reciprocal space of the octagonal quasiperiodic tiling. (a) Reciprocal
vectors obtained with g � �0; 0; 0; 0�, which corresponds to the reciprocal
of the average structure shown in Fig. 1(d). The reciprocal vectors
corresponding to g � �1; 1; 1; 1�, with smaller dots, and g � �2; 2; 2; 2�,
with even smaller dots, are superimposed and shown in (b) and (c),
respectively. (d) Diffraction pattern of the average structure. Black spots
are re¯ections that ful®l equation (19). The remaining re¯ections are
shown using gray dots with radius proportional to their intensity.
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asjk � es �
P

l 6�j 6�k 6�s
�Vlsj=Vsjk�el;

ajks � ej �
P

l 6�j6�k 6�s
�Vljk=Vsjk�el;

aksj � ek �
P

l 6�j 6�k 6�s
�Vslk=Vsjk�el

and

Rjks �
X

l 6�j6�k6�s
�s

Vlsj

Vsjk

� �j

Vljk

Vsjk

� �k

Vslk

Vsjk

ÿ �l ÿ 1
2

� �
el;

plus a ¯uctuation part:

f0
ns;nj;nk

�
XN
k<j<s

XN
l 6�j 6�k6�s

 
1
2 ÿ xns

Vlsj

Vsjk

� xnj
Vljk

Vsjk

� xnk
Vslk

Vsjk

ÿ �l

( )!
el:

In three dimensions, the average structure then consists of a

superposition of N
3

ÿ �
lattices plus the corresponding shift terms.

The diffraction pattern of the three-dimensional quasi-

lattice, written as

t0
ns;nj;nk

� ht0
ns;nj;nk

i � f0
ns;nj;nk

;

is calculated in a similar way to that exposed in x4. The total

FT of the three-dimensional quasilattice is

F�q� �
X

ns;nj;nk;gl

hns;nj;nk �q�
Y

l 6�j6�k6�s
B�gl�

 !

� exp

"
iq � �nses � njej � nkek�

� i
X

l 6�j6�k 6�s
ns

Vlsj

Vsjk

� nj
Vljk

Vsjk

� nk
Vslk

Vsjk

� �
�q � el � 2�gl�

#
;

where

B�g� � B�e; f ; g� �
0 if e 6� f 6� g
ÿi exp�ÿiq � el� ÿ 1

2�g� q � el
if e � f � g

8<
:

and

hns;nj;nk�q� �
1

Zns;nj;nk

� exp�ÿiq � es�
Znsÿ1;nj;nk

� exp�ÿiq � ej�
Zns;njÿ1;nk

� exp�ÿiq � ek�
Zns;nj;nkÿ1

� exp�ÿiq � �es � ek��
Znsÿ1;nj;nkÿ1

� exp�ÿiq � �ej � ek��
Zns;njÿ1;nkÿ1

� exp�ÿiq � �es � ej��
Znsÿ1;njÿ1;nk

� exp�ÿiq � �es � ej � ek��
Znsÿ1;njÿ1;nkÿ1

:

With the use of the average coordination in the previous

equation, the sum over nj, nk and ns can be carried out in the

equation for the total FT, and it turns out that F�q� is different

from zero at vectors q � Q, where

Q �
X

k< j< s

X
ms;mk;mj

"
Vsjkms �

X
l 6�j6�k 6�s

Vlsjgl

 !
Q

�1�
sjk

� Vsjkmj �
X

l 6�j6�k6�s
Vljkgl

 !
Q

�2�
sjk

� Vsjkmk �
X

l 6�j6�k 6�s
Vsklgl

 !
Q

�3�
sjk

#
:

Q
�1�
sjk, Q

�2�
sjk and Q

�3�
sjk are vectors that de®ne the basis in the

reciprocal space, and are given by

Q
�1�
sjk �

2��v� w�
u � �v� w� ; Q

�2�
sjk �

2��w� u�
u � �v� w� ; Q

�3�
sjk �

2��u� v�
u � �v� w� ;

where

u � Vsjkes �
P

l 6�j 6�k 6�s
Vlsjel;

v � Vsjkej �
P

l 6�j 6�k 6�s
Vljkel;

w � Vsjkek �
P

l 6�j6�k 6�s
Vslkel:

Finally, the amplitude of the FT is

I�q� �
X
Q

khsjk�q�k2
Y

l 6�j 6�k 6�s

4 sin2�q � el=2�
�2�gl � q � el�2

 !
��qÿQ�:

The function hsjk�q� is the same as hns;nj;nk�q� but the local

coordination has been replaced by the average coordination.

6. Relationship with the cut-and-projection method

For completeness, we shall brie¯y discuss the relationship of

the present approach with the cut-and-projection method

(Duneau & Katz, 1985). It is directly related to non-orthog-

onal projections, originally proposed to describe continuous

transformations from quasiperiodic to periodic structures

using the cut-and-projection method (Torres et al., 1989). Let

Figure 3
Comparison between the diffraction patterns of the octagonal quasi-
periodic tiling, calculated using the cut-and-projection method, and the
average structure, obtained from (16) and (18). The former is shown with
circles with radius equal to the calculated intensity. The pattern of the
average structure is superimposed using ®lled squares with edge length
equal to twice the calculated intensity.



us consider the case of the Fibonacci sequence, which is the

most simple quasiperiodic structure in one dimension. The

coordinate of the nth vertex of the quasiperiodic sequence of

vertices is given by

tm � mS� 1

�

m

�

j k
S:

It produces a Fibonacci sequence of short (S) and long

(L � �S) intervals. By decorating the sequence tm with atoms

at the vertices, we obtain the most studied example of a

quasicrystal in one dimension. As described in x3, the substi-

tution bxc � xÿ fxg gives

tm � mS� 1

�

m

�
ÿ m

�

n o� �
S

� m�3 ÿ ��Sÿ m

�

n o S
�
:

We then have, as usual, an average periodic structure with

period a � �3 ÿ ��S and the last term is the ¯uctuation part.

The average property of �3 ÿ ��S can be better appreciated by

noticing that the ¯uctuation part in tm is always less that 1 so,

for large m, the dominant term is m�3 ÿ ��S. Under this

condition, we have tm=m � htmi � �3 ÿ ��S.

In the cut-and-projection approach, the sequence tm is

generated by projecting certain vertices of a two-dimensional

square periodic structure onto an adequately selected space

Ek (Duneau & Katz, 1985). In particular, let � � Z
2 be the

square lattice in R2, generated by the standard canonical basis,

with unitary square ÿ2. Let Ek be the one-dimensional space,

where the sequence is generated, and E? the orthogonal

complement. Denote by Pk and P? the two complementary

projectors onto Ek and E?, respectively; Ek � Pk�R2�,
E? � P?�R2� and R

2 � Ek � E?. A strip S is generated by

shifting ÿ2 along Ek. The orthogonal projection onto Ek of the

points that fall inside the strip produces the vertices of a non-

periodic sequence Q � Pk�S \��, provided that the slope of

Ek, with respect to the canonical basis of R2, is an irrational

number. The Fibonacci sequence is obtained if tan � � 1=�, �
is the golden ratio. Under this condition, the large and short

segments are L � cos � and S � sin �. By changing the slope

of Ek so that tan � equals a rational approximant of �, one

obtains structures formed by a periodically repeated sequence

of segments (Torres et al., 1989). An alternative and equivalent

procedure consists of maintaining the slope of Ek but using

instead a non-orthogonal projection. By following this last

approach, Duneau & Oguey (1990) demonstrated that, under

certain conditions, an average lattice, obtained by means of an

oblique projection, can be associated with the quasiperiodic

structure. In the above discussed case of the Fibonacci

sequence, the average lattice is obtained by projecting, onto

Ek, the vertices of � inside the strip along the direction

parallel to the vector �ÿ1; 1� in R2, as described in detail by

Duneau (1991) and Steurer & Haibach (1999). In Fig. 4, we

show a simpli®ed version of a portion of this scheme. The

orthogonal projection onto Ek of the vertices of � inside the

strip S produces the quasiperiodic sequence of long and short

intervals. The projection along one of the square diagonals

(� � �=4) yields the average lattice represented by bold dots

along Ek. The period a of this structure can be obtained by

noticing that

a � Lÿ tan �=4 ÿ �� �S:
By using the facts that L � �S and tan � � 1=�, we get

a � � ÿ 1 ÿ 1=�

1 � 1=�

� �
S � �3 ÿ ��S;

as expected.

The cut-and-projection method is easily generalizable to

obtain quasilattices in n dimensions by projecting vertices of

an N-dimensional lattice (Duneau & Katz, 1985). In this case,

the periodic hyperstructure is � � Z
N with unitary hypercell

ÿN . Dim�Ek� � n and Dim�E?� � N ÿ n. The procedure

follows the same lines as in the above-described case for

N � 2, n � 1. The generalization of the oblique projection

technique to more dimensions is as follows (Duneau & Oguey,

1990; Xu & Mai, 1998). Let W be the projection of the unit

hypercube ÿN onto E? (the so-called window or acceptance

domain). If W tiles the orthogonal space (i.e. W is a prototile),

then an average lattice is associated with the quasilattice by

the oblique projection (Duneau & Oguey, 1990). If this

condition over W is not ful®lled, then let us assume that the

window can be divided into W1;W2; . . . ;Wk disjoint cells, such

that each Wi tiles the orthogonal space. The strip S is then

subdivided into k substrips S1; S2; . . . ; Sk and the quasilattice

Q is also partitioned into Q1;Q2; . . . ;Qk. To each Qi an

average lattice can be associated by means of an oblique

projection of the vertices of � falling inside the corresponding

substrip Si.

Without further details, we just compare our results of x3.1

with those obtained by Xu & Mai (1998) using the oblique

projection. The octagonal quasiperiodic structure is generated

by projecting points in � � Z
4. The window W � P?�ÿ4� is a

regular octagon. Since the octagon is not a prototile, W is

divided into six disjoint subwindows W1;W2; . . . ;W6: two

squares and four 45� rhombuses (see Fig. 1 in Xu & Mai,

1998). The quasilattice Q is then subdivided into
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Figure 4
A portion of the cut-and-projection scheme to illustrate the oblique
projection that leads to the average lattice of the Fibonacci chain,
represented by bold dots along the Ek line.
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Q1;Q2; . . . ;Q6 substructures and an average lattice is asso-

ciated with each Qi by means of the oblique projection. Given

the structure of the window, the six average lattices obtained

are two square and four 45� rhombohedral lattices, which

coincides with our results in x3.1 [equation (12)]. The one-to-

one correspondence between the octagonal quasiperiodic

structure and the rhombohedral average lattice L21, shown in

Fig. 1(b), is depicted in Fig. 5 of Duneau & Oguey (1990).

7. Summary and discussion

In this work, we show that a quasiperiodic lattice can be

separated into two parts: an average structure plus a factor

that considers the ¯uctuations from the average positions. The

average structure of a given quasilattice is calculated using the

dual generalized method and it turns out that it is composed

by several average lattices. The importance of the average

structures in quasicrystals relies on the facts that the reciprocal

of the average structure contains a signi®cant fraction of the

scattered intensity of the quasiperiodic structure and that the

average structure dominates the response for long-wave

modes of incident radiation. A possible consequence of these

properties is that the average structure can be useful to

determine the main terms that contribute to de®ne a physi-

cally relevant Brillouin zone.

The use of the dual generalized method allows us to write

explicit analytical expressions for the vertex coordinates of the

quasilattice, the average structure and their diffraction

pattern. These expressions provide a useful procedure to

generate quasiperiodic tilings in an ef®cient and general way,

avoiding the computational problems of the pure GDM and

the cut-and-projection methods (for the last case, see AragoÂ n

et al., 1989; Vogg & Ryder, 1996). Also, a useful frame to

understand the reciprocal-space properties of quasiperiodic

structures is provided. The particular example of the octag-

onal quasiperiodic tiling is worked out.
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A technical error invalidates the proof that the optimal root-

mean-square deviation of vector sets induces a metric given in

Kaindl & Steipe [Acta Cryst. (1997), A53, 809]. Nevertheless,

the conclusions are correct and a revised proof is given in

Steipe [Acta Cryst. (2002), A58, 506].

The author is indebted to Dr Xu Huafeng for pointing out the

technical error in the previously published manuscript (Kaindl &

Steipe, 1997).
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